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It is well known that (1) natural selection typically favors an allele with both a large mean fitness and a small variance in fitness; and

(2) investors typically prefer a portfolio with both a large mean return and a small variance in returns. In the case of investors, this

mean–variance trade-off reflects risk aversion; in the case of evolution, the mathematics is straightforward but the result is harder

to intuit. In particular, it is harder to understand where, in the mathematics of natural selection, risk aversion arises. Here I present

a result that suggests a simple answer to this question. Although my answer is essentially identical to one offered previously, my

path to it differs somewhat from previous approaches. Some may find this new approach easier to intuit.
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The purpose of this note is to explain a familiar connection be-

tween the theory of evolution and the theory of finance. It is well

known that most investors should, when choosing among portfo-

lios, pay attention to both the mean and variance in returns. For

example, when choosing among risky portfolios—those that con-

tain only assets like stocks and bonds, whose returns fluctuate

unpredictably through time—investors should typically choose a

portfolio that maximizes the mean per-period return on invest-

ment while minimizing the variance in per-period returns (Bodie

et al. 2007, chaps. 6 and 7). Investors should not, therefore, nec-

essarily choose that portfolio with the greatest expected return.

Instead, they might well be better off choosing a portfolio with a

somewhat lower expected return if it also features a much lower

variance in returns.

Similarly, it is well known that when the fitnesses of alleles

fluctuate through time natural selection will typically “choose”

the allele that shows the best trade-off between average fitness

and variance in fitness. For example, in haploid models in which

the absolute fitnesses of genotypes fluctuate randomly through

time (with no autocorrelation), the allele that ultimately dom-

inates the population is the one with the greatest geometric

mean absolute fitness through time (Dempster 1955; Haldane and

Jayakar 1963; Gillespie 1973). Because the geometric mean is

G ≈ � − �2/(2�), where � is the (arithmetic) mean and �2 is

the variance in absolute fitness, the allele favored by natural se-

lection is the one that best boosts � while reducing �2. Oddly,

then, both selection of an optimal portfolio and selection of the

best allele typically depend on the first and second moments of

performance. All else being equal, smaller variances are better.

Although it is easy to derive these well-known results from

population genetics (Gillespie 1973; Bulmer 1994, pp. 99–101),
it is not so obvious why portfolio selection and natural selection

show such similar properties. The problem is this: An investor

should reduce the variance in returns only if he is risk averse (al-

most all investors are risk averse; more on this shortly). An unusual

investor who simply wants to increase his expected total wealth—

an investor who is risk neutral—should not consider the variance

in returns. Instead, he should choose the investment having the

greatest arithmetic mean return. The question I ask here is: Why

does natural selection act as although it is risk averse? Where in

the mathematics of selection does risk aversion enter?

I suggest an answer below. To see this answer, I briefly review

what it means to be risk averse. I then present a simple result that

shows where risk aversion arises in the mathematics of selection.

I emphasize that few or no new theoretical results emerge below;

in fact my key finding is essentially identical to one obtained by
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Figure 1. Investor satisfaction as a function of total wealth. The

top curve (concave) corresponds to a risk-averse investor; the mid-

dle curve (linear) corresponds to a risk-neutral investor; the bottom

curve (convex) corresponds to a risk-prone investor.

Gillespie (1977) (see also Frank and Slatkin [1990] and Grafen

[1999, 2002]). My route to this result will, however, differ some-

what from those taken by previous authors. It is hoped that this

new approach might bring greater notice to these earlier findings.

RISK AVERSION AND UTILITY

When considering tolerance of financial risk, it is convenient to

distinguish among three types of investors. The first is risk averse.

Such an investor is pleased to receive his first $1000 but is not

quite as pleased to receive his second $1000. This investor is

considered risk averse because, after receiving his first $1000,

he would be more upset to lose that $1000 than pleased to make

another $1000. If we plot an investor’s total wealth on the x-axis

versus his “satisfaction” on the y-axis, a risk-averse investor shows

a curve of diminishing returns (Fig. 1). This curve is called a utility

function. A risk-averse investor has a concave utility function.

Given this concavity, it is easy to show (by Jensen’s inequality

[Ross 1999; Stearns 2000]) that, all else equal, an investor should

prefer small fluctuations in wealth. This is because big increases

in wealth boost utility less than big decreases in wealth lower it.

The second kind of investor is risk neutral. Such an investor is

as pleased to receive his second $1000 as his first. He has a linear

utility function. The third kind of investor is risk prone. Such an

investor is more pleased to receive his second $1000 than his first.

He has a convex utility function.

In financial theory, utility is often expressed as a function of

the returns on a portfolio. This function can be tuned to allow for

the cases of risk aversion, risk neutrality, and risk proneness. A

widely used relationship is

U = E[r ] − A�2

2
, (1)

where E[r ] is the expected return on a portfolio, �2 is the variance

in returns, and A is the index of risk aversion (Bodie et al. 2007;

see also the Chartered Financial Analysts Institute). If A > 0, an

investor is risk averse; if A = 0, an investor is risk neutral; and

if A < 0, an investor is risk prone. Abundant empirical evidence

shows that most investors are risk averse (Bodie et al. 2007).

When surveying risky assets, an investor should choose a

portfolio that maximizes his utility. For a risk-averse investor,

equation (1) shows that this requires weighting assets within a

portfolio, for example, how much is invested in stocks versus

bonds, in a way that increases E[r ] while decreasing �2 (Bodie

et al. 2007). Note, however, that this is not the strategy that a

risk-neutral investor (A = 0) should pursue. Instead, a risk-neutral

investor should choose a portfolio that maximizes E[r ] regardless

of �2. This maximizes the risk-neutral investor’s expected return

and his utility.

Returning to evolution, we can refine our question. If nat-

ural selection favors an allele that increases mean fitness while

decreasing the variance in fitness, selection acts as though it

were risk averse. What, then, plays the role of the concave utility

function in evolution? Given, as many have suggested (Dawkins

1995; Stearns 2000), that fitness is the utility that natural selection

maximizes— that is, fitness is the only thing that natural selection

cares about and fitness therefore sits on the y-axis of the plot cor-

responding to Figure 1—what population-genetic quantity sits on

the x-axis?

It is important to immediately dismiss a misleading possi-

bility. If we consider a morphological or behavioral trait, we can

trivially introduce a curve of diminishing returns between the trait

and fitness. This is done routinely in the large literature on bet-

hedging in behavioral ecology (e.g., Seger and Brockman 1987;

Real and Ellner 1992). Such a relationship is enough to ensure

that evolution acts in a risk-averse way. But this has no bearing

on our problem, which is subtler. Our population-genetic result

is not concerned with any morphological or behavioral trait, but

with fitness only.

HAPLOID SELECTION

To see the solution to our problem, consider a simple model of hap-

loid selection involving two genotypes, A1 and A2. Generations

are discrete. Our analysis will, by analogy with a “single-period”

analysis in finance, consider only one bout of selection, chang-

ing allele frequency from one generation to the next. In the cur-

rent generation, A1 has frequency p and A2 has frequency q, with

p + q = 1. Assigning fitnesses to these genotypes, we assume, for

the moment, that fitnesses are constant. Genotype A1 has absolute

fitness W 1 and genotype A2 has absolute fitness W 2. The mean

absolute fitness of the population is W̄ = pW1 + qW2. We define

the relative fitness of A1 asw1 = W1/W̄ and of A2 asw2 = W2/W̄ .

The mean relative fitness of the population is w̄ = 1. Note that

our parameterization of this selection model differs somewhat

from the traditional one. In particular, we define relative fitness

as relative to the mean absolute fitness of the population whereas
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Figure 2. Relative fitness is a concave function of absolute fitness.

In the example shown, p = q = 0.5 and W 2 = 0.5. It should also

be noted that the extent of the concave relationship between w1

and W1 depends on p: as p gets very small the relationship be-

comes nearly linear (Frank and Slatkin 1990). Thus a new mutation

is nearly risk neutral. For larger p, the relationship between w1

and W1 becomes more curvilinear (see eqs. 3 and 4).

relative fitness is often defined relative to a reference genotype

(typically the fittest genotype). Our parameterization was often

used by Kimura and Crow (1978) and Falconer (1981), among

others. It will help to clarify our thinking.

The ratio of A1’s frequency in the next generation to that in

the current generation is

p′

p
= w1. (2)

Equation (2) shows why relative fitness can be taken as a good

utility function. The allele that increases in frequency fastest is

the allele with the largest relative fitness. Nothing else matters.

So what can an allele, say A1, do to increase its relative fitness?

To simplify our problem, we treat allele frequencies as constants

in the current generation; we also continue to treat the fitness of

the A2 allele as constant. Thus the only thing that A1 can do to

increase its relative fitness is to increase its absolute fitness, W 1.

But increasing W 1 has less effect on w1 than one might guess.

The reason is that there is a curve of diminishing returns between

absolute fitness and relative fitness. This is shown in Figure 2.

Formally,

∂w1

∂W1
= qW2

(pW1 + qW2)2
= qW2

W̄ 2
, (3)

∂2w1

∂W 2
1

= − 2pqW2

(pW1 + qW2)3
= −2pqW2

W̄ 3
, (4)

that is, the function mapping absolute fitness onto relative fitness

is concave for all nonzero p, q, W 1, and W 2.

Equations (3) and (4) and Figure 2 reveal something coun-

terintuitive about natural selection: producing one more offspring

affects relative fitness less than producing one fewer offspring.

More exactly, producing an extra offspring improves a genotype’s

fitness relative to the population mean less than producing one

fewer offspring worsens a genotype’s fitness relative to the pop-

ulation mean. The latter statement is independent of the fitness

scheme used above (see the Appendix). This, then, is where the

curve of diminishing returns enters the mathematics of natural

selection.

Given this concave function, it can be shown by Jensen’s

inequality that natural selection is sensitive to both the mean and

variance in a genotype’s absolute fitness (Gillespie 1977; Stearns

2000). In particular, it can be shown that natural selection prefers

an allele that boosts mean absolute fitness while reducing the

variance in absolute fitness.

COMPARISON TO PREVIOUS RESULTS

AND CONCLUSIONS

Given that relative fitness is the quantity that natural selection

cares about, the present approach may make the analogy between

evolution and finance clearer: both feature a mean–variance trade-

off because both feature concave utility functions. In finance, the

concave function involves wealth versus satisfaction, whereas, in

evolution, it involves absolute fitness versus relative fitness.

Gillespie (1977) derived a result that is formally equivalent

to the one presented here. In particular, he showed that there is a

curve of diminishing returns between the number of copies of an

allele in the next generation and that allele’s frequency in the next

generation. Although the present result can be derived trivially

from Gillespie’s result, some may find the present interpretation

easier to intuit. In particular, the idea of risk aversion might seem

captured more naturally by a relationship between absolute and

relative fitness than by a relationship between allele copy number

and allele frequency. In any case, a curve of diminishing returns

between absolute and relative fitness may have evolutionary im-

plications not suggested by an analogous curve between copy

number and frequency.

Frank and Slatkin (1990) also briefly described the curvi-

linear relationship between “reproductive success” and relative

fitness. Their discussion appeared, though, in a somewhat techni-

cal paper devoted to the analysis of units of selection, that is, to

partitioning variation in total reproductive success to that due to

variation within individuals of a genotype and that due to correla-

tions in success across individuals. Grafen (1999, 2002) also noted

that strategies that maximize the geometric mean of the absolute

number of progeny simultaneously maximize the arithmetic mean

of the relative number of progeny, a closely connected point. In

any case, these authors’ results have not received the attention they

deserve. It is hoped that the present approach will bring greater

notice to their findings.

Finally, I emphasize that the analysis presented here is limited

in some ways. In particular, by analogy with single-period analysis

in finance, I have considered only a single bout of natural selection.
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Risk aversion might also arise in multibout (multiple generation)

models of natural selection for reasons that are independent of

those discussed here.
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Appendix
Change in allele frequency is a function of a genotype’s fitness

relative to (normalized by) the population mean fitness. Our claim

is that producing an extra offspring improves a genotype’s fitness

relative to the population mean less than producing one fewer

offspring worsens a genotype’s fitness relative to the population

mean. We also claim that this result is independent of the fitness

scheme used, that is, the unorthodox one in which a genotype’s

absolute fitness is normalized by the population mean absolute

fitness (as above) or the orthodox one in which absolute fitness is

normalized by the absolute fitness of the best genotype. I prove

these claims here.

In the unorthodox fitness scheme, w1 = W1/W̄ and W̄ =
pW1 + qW2, as in the text. A genotype’s fitness relative to the

population mean fitness is just R = w1/w̄ = W1/W̄ . Because

w̄ = 1, R = w1 and ∂ R/∂W1 and ∂2 R/∂W 2
1 are identical to

equations (3) and (4) of the text, respectively. R is therefore a

concave function of W 1. In the orthodox fitness scheme, w1 =
W 1/W 1 = 1 (where we assume genotype 1 is fittest) and w2 =
W 2/W 1. A genotype’s fitness relative to the population mean is

R = w1/w̄ = W1/W̄ , which is the same as above. Thus ∂ R/∂W1

and ∂2 R/∂W 2
1 are again identical to equations (3) and (4) of the

text and R is a concave function of W 1.
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